Non-native mammals: their varying roles in a novel ecosystem

Ann Marie Gawel, Haldre Rogers, Evan Fricke, Julie Savidge, Alex Kerr, Ross Miller
Novel ecosystems

- Systems with species assemblages historically unknown from that area
- Arise through species invasion, environmental change, or both – from anthropogenic causes
- Describes the majority of ecosystems in the world
- Describes Guam’s bird-less habitats
Mammalian introductions to the Marianas

- Philippine deer (*Rusa marianna*) introduced to Guam 1770’s
- Pigs (*Sus scrofa*) introduced to Guam 1660’s
- Polynesian rat (*Rattus exulans*) no later than 1200-1000 AD, ship rat (*Rattus rattus*) with European explorers
Deer and pigs: ecology in Guam

- Do they kill seedlings?
- Do they disperse seeds?
- How do they affect different forest characteristics?
Do deer and pigs kill seedlings?

- Set up paired treatments:
 - Fenced
 - Unfenced
- Planted six common species:
 - Mapunao (*Aglaia mariannensis*)
 - Ladda (*Morinda citrifolia*)
 - Ågao (*Premna serratifolia*)
 - Fagot (*Ochrosia oppositifolia*)
 - Papåya (*Carica papaya*)
 - Aplokåting (*Psychotria mariana*)
Do deer and pigs kill seedlings?
Do deer and pigs disperse seeds?

- Collected pig and deer scats
- “Planted” scats
- Identified germinants
Do deer and pigs disperse seeds?

<table>
<thead>
<tr>
<th>Species</th>
<th>Average seeds per fruit</th>
<th>Deer</th>
<th>Pig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morinda citrifolia</td>
<td>164</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Ficus prolica</td>
<td>189</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>721</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Vitex parviflora</td>
<td>1-2*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Passiflora suberosa</td>
<td>26</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Mikania micrantha</td>
<td>achene</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Coccinia grandis</td>
<td>126</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Chromolaena odorata</td>
<td>achene</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Leucaena leucocephala</td>
<td>18*</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>unknown</td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Average seeds per scat per species:

- *na* indicates not applicable.

Average seedlings per scat:

- *1* indicates one seedling.
- *2* indicates two seedlings.
- *3* indicates three seedlings.
- *4* indicates four seedlings.
- *5* indicates five seedlings.
- *6* indicates six seedlings.
- *7* indicates seven seedlings.
- *8* indicates eight seedlings.
- *9* indicates nine seedlings.
- *10* indicates ten seedlings.
Do deer and pigs disperse seeds?

Native plants

Species
- Meiogynne (paipai)
- Ochrosia (fagot)
- Aglaia (mapunao)
- Flagellaria
- Eugenia (a’abang)
- Ochrosia (langiti)
- Cycas (fadang)
- Morinda (ladda)
- Ficus (nunu)

Non-native plants

Species
- Vitex parviflora
- Triphasia trifolia
- Passiflora suberosa
- Mikania micrantha
- Leucaena leucocephala
- Conyza canadensis
- Coccinia grandis
- Chromolaena odorata
- Carica papaya

Proportional abundance
How do deer and pigs affect different forest characteristics?

- Belt transects were used to survey forest-community composition.
- Larger belt transects were used to count scat and estimate ungulate abundance.
How do deer and pigs affect different forest characteristics?
Takeaways from deer and pig studies

- Deer strongly linked to declines in seedling and vine abundance
- Pigs disperse seeds of both native and non-native plant species
- Deer appear to be more detrimental in limestone karst forest sites
- Important to make distinctions between species and habitats in consideration of novel ecosystems
What about rats?

- Known to be harmful
 - Direct predation on native wildlife
 - Out-compete native fauna
 - Spread disease
 - Destroy seeds
- Can they disperse seeds?
 - Evidence that some small seeds can survive gut passage
What about rats?

Feeding trials
1.) Trap wild rats (black rats or *Rattus rattus*)
2.) Collect fruits from limestone karst forest areas of Guam
3.) Feed rats collected fruits
4.) Recorded what happened to fruits and seeds
What about rats?

<table>
<thead>
<tr>
<th>species</th>
<th>native?</th>
<th>#fruits added</th>
<th>#seeds handled</th>
<th>#fruits remaining</th>
<th>#seeds in scat</th>
<th>approx #seeds destroyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>aglaia</td>
<td>native</td>
<td>60</td>
<td>55</td>
<td>35.15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>aidia</td>
<td>native</td>
<td>72</td>
<td>15</td>
<td>44.5</td>
<td>3</td>
<td>724.5</td>
</tr>
<tr>
<td>elaeocarpus joga</td>
<td>native</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>eugenia palumbis</td>
<td>native</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>eugenia reinwardtiana</td>
<td>native</td>
<td>14</td>
<td>11</td>
<td>9.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ficus microcarpa</td>
<td>native</td>
<td>38</td>
<td>0.6</td>
<td>32</td>
<td>53</td>
<td>1146.4</td>
</tr>
<tr>
<td>ficus prolixa</td>
<td>native</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>241</td>
</tr>
<tr>
<td>flagellaria</td>
<td>native</td>
<td>44</td>
<td>4</td>
<td>33</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>maytenus</td>
<td>native</td>
<td>23</td>
<td>6</td>
<td>16</td>
<td>0</td>
<td>4.5</td>
</tr>
<tr>
<td>melanolepis</td>
<td>native</td>
<td>100</td>
<td>18</td>
<td>89</td>
<td>0</td>
<td>9.5</td>
</tr>
<tr>
<td>morinda</td>
<td>native</td>
<td>6</td>
<td>76</td>
<td>1.8</td>
<td>1</td>
<td>611.8</td>
</tr>
<tr>
<td>neirosperma</td>
<td>native</td>
<td>15</td>
<td>5</td>
<td>14.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ochrosia</td>
<td>native</td>
<td>16</td>
<td>2</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pandanus</td>
<td>native</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pipturus</td>
<td>native</td>
<td>149</td>
<td>0.6</td>
<td>8</td>
<td>0</td>
<td>6344.4</td>
</tr>
<tr>
<td>prenna</td>
<td>native</td>
<td>159</td>
<td>1</td>
<td>57</td>
<td>0</td>
<td>407</td>
</tr>
<tr>
<td>psychotria</td>
<td>native</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>averrhoa</td>
<td>non-native</td>
<td>5</td>
<td>1</td>
<td>3.75</td>
<td>0</td>
<td>8.625</td>
</tr>
<tr>
<td>carica papaya</td>
<td>non-native</td>
<td>7</td>
<td>379</td>
<td>0.15</td>
<td>0</td>
<td>1210.2</td>
</tr>
<tr>
<td>leucaena</td>
<td>non-native</td>
<td>9</td>
<td>21</td>
<td>3.8</td>
<td>0</td>
<td>93.4</td>
</tr>
<tr>
<td>passiflora foetida</td>
<td>non-native</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>425.8</td>
</tr>
<tr>
<td>passiflora suberosa</td>
<td>non-native</td>
<td>32</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>818</td>
</tr>
<tr>
<td>triphasia</td>
<td>non-native</td>
<td>39</td>
<td>35</td>
<td>2</td>
<td>0</td>
<td>13.1</td>
</tr>
<tr>
<td>vitex</td>
<td>non-native</td>
<td>14</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
What about rats?
Future work

• Feeding trials
 • Continue with rats
 • Begin trials with pigs
 • Germination trials
• Estimation of environmental damage
• Forest trajectories for how to rebuild/restore functioning ecosystems in Guam
• Social science work
Si Yu’os Ma’åse’